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Lecture 1: Non-parametric Mixture Models

Lecturer: Professor Pramod Viswanath Scribe: Ali Yekkehkhany, Sept. 12, 2017

1.1 Non-parametric Mixture Models [Was06, Loa06]

Consider data points {x1, x2, · · · , xN} that are independent realizations of the same distribution
f(x), which is unknown to us. We are looking for the underlying probability law that explains
the data, i.e. we are looking for an estimate of the probability density distribution f(x) based
on the observed data points. To this end there are two general approaches: 1- Non-parametric
that is the topic of this lecture, 2- Parametric that is discussed in the next lecture. In parametric
method, some assumptions are made about the probability density function, for example it is
assumed that data points are drawn independently at random from same Gaussian distribution
and the goal is to find the mean and variance of the Gaussian distribution. On the other hand, the
goal of non-parametric density estimation is to have as few assumptions as possible about the
underlying probability density function to estimate f(x). Before presenting the common approaches
for pdf estimation, the risk of an estimator is formulated in the next section.

1.1.1 Risk of the Estimator

Let f̂N (x) be the estimate of the true pdf function f(x) based on the observed data {x1, x2, · · · , xN}.
The following metric is broadly used to evaluate the performance of the estimator, which is the
integrated mean squared error loss or the risk:

L =

∫ (
f̂N (x)− f(x)

)2
dx. (1.1)

As we will see later, the estimator of f(x), f̂N (x), depends on a smoothing parameter h that is
chosen in a way to minimize the risk, then equation (1.1) can be written as

L(h) =

∫
f̂2
N (x) dx− 2

∫
f̂N (x)f(x) dx+

∫
f2(x) dx. (1.2)

Since the last term of (1.2) does not depend on the smoothing parameter h, instead of minimizing
the expected risk with respect to h, one can minimize the expectation of J(h) that is defined as

J(h) =

∫
f̂2
N (x) dx− 2

∫
f̂N (x)f(x) dx. (1.3)

Unless E[J(h)] differs from the true risk by
∫
f2(x) dx, it is also referred to as risk. Leave-one-out

cross-validation is a method to estimate the risk which is define as

Ĵ(h) =

∫
f̂2
N (x) dx− 2

N

N∑
i=1

f̂(−i)(xi),
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where f̂(−i) is the pdf estimator based on data points {x1, x2, · · · , xi−1, xi+1, · · · , xN}, where xi is

excluded. Ĵ(h) is called cross-validation estimator of risk (also called the cross-validation score
or simply the estimated risk). The next two sections present two popular ways of estimating the
pdf.

1.1.2 Histogram Estimator

The simplest non-parametric pdf estimator is perhaps the histogram estimator. Without loss of
generality, suppose the support of the pdf is [0, 1]. Define bins of length h = 1

m as follows, where m
is an integer number:

B1 =

[
0,

1

m

)
, B2 =

[
1

m
,

2

m

)
, · · · , Bm =

[
m− 1

m
, 1

]
.

Define the number of observed data points in the j-th bin as Yj and let p̂j =
Yj
N . Then the

histogram estimator is given by

f̂N (x) =

m∑
j=1

p̂j
h
I(x ∈ Bj) (1.4)

The intuition behind choosing the pdf function defined in (1.4) is the following. Let pj =
∫
Bj
f(u) du,

and let h to be a small number, then for x ∈ Bj we have the following:

E
[
f̂N (x)

]
=

E [p̂j ]

h
=
pj
h

=

∫
Bj
f(u) du

h
≈ f(x) · h

h
= f(x).

The important thing in the histogram estimator method is to choose the right number of bins in order
to prevent under-smoothing or over-smoothing. Figure 1.1 is driven from N = 1266 astronomical
data points. The bottom right plot shows the estimated risk versus the number of bins, so the
parameter h = 1

m can be chosen to minimize the risk and to prevent under/over-smoothing. The
mean and the variance of the histogram estimator for a fixed x ∈ Bj and a fixed integer m are

E
[
f̂N (x)

]
=
pj
h
, V ar

[
f̂N (x)

]
=
pj(1− pj)
Nh2

.

The following theorem is followed, where it gives a nice intuition about the convergence rate of risk
to zero and the optimum h that results in the fastest convergence of risk.

Theorem 1.1. Let the probability density function f(x) be absolutely continuous and
∫

(f(u))2 du <

∞, then the risk associated to the histogram estimator f̂N (x) is

R
(
f̂N , f

)
=
h2

12

∫
f2(u) du+

1

Nh
+ o

(
h2
)

+ o

(
1

N

)
(1.5)

The optimum value for h, h∗, that minimizes the risk given in (1.5) is

h∗ =
1

N
1
3

(
6∫

f2(u) du

) 1
3

(1.6)
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Figure 1.1: Histogram estimator for three choices of h, when it results in under-smoothing, over-
smoothing, and when it is just right. The bottom right plot shows the estimated risk for different
number of bins.

The risk of the histogram estimator with the choice of bin-width h in (1.6) is

R
(
f̂N , f

)
∼ C

N
2
3

, (1.7)

where C =
(

3
4

) 2
3
(∫
f2(u) du

) 1
3 .

Equation (1.7) in theorem 1.1 gives the convergence rate of the risk as N−
2
3 . It will be shown later

that the convergence rate for kernel estimators is N−
4
5 and in some sense a faster rate is not feasible.

Note that the optimal h given by (1.6) cannot be computed directly since f(x) is not known. In
practice, we use cross-validation. The cross-validation score, Ĵ(h), is given as

Ĵ(h) =
2

h(N − 1)
− N + 1

h(N − 1)

m∑
j=1

p̂2
j .

The following theorem gives a confidence set for f(x), but before that we define the histogramized
version of f(x) as

fN (x) = E
[
f̂N (x)

]
=

m∑
j=1

pj
h
I(x ∈ Bj).

Theorem 1.2. The number of bins m = m(N) in the histogram f̂N satisfies m(N) → ∞ and
m(N) log(N)

N → 0 as N →∞. Then

P
(
lN (x) ≤ fN (x) ≤ uN (x) for all x

)
≥ 1− α,

3



where

lN (x) =

(
max

{√
f̂N (x)− c, 0

})2

, uN (x) =

(√
f̂N (x) + c

)2

,

where c =
zα/(2m)

2

√
m
N . In other words, (lN (x), uN (x)) is an approximate 1− α confidence band for

fN (x).

1.1.3 Kernel Density Estimator (KDE)

Histograms are not smooth and their convergence rate is slower than kernel method. Consider
function K that satisfies the following:∫

K(x) dx = 1,

∫
xK(x) dx = 0, σ2

K =

∫
x2K(x) dx > 0.

The box, tricube, Epanechnikov, and Gaussian kernel functions are examples of widely used ones.
Given a kernel function K and bandwidth h > 0, the kernel bandwidth estimator is defined
as

f̂N (x) =
1

N

N∑
i=1

1

h
K(

x− xi
h

). (1.8)

The interpretation of (1.8) is to put a smoothed function with weight 1
N over each observed data

point xi. The choice of the kernel function is not as crucial as the choice of the bandwidth h, and
similar to the histogram estimator, wrong choices of h can lead to under/over-smoothing.

Theorem 1.3. Let f(x) be continuous at x and hN → 0 and NhN →∞ as N →∞, then

f̂N (x)
P−→ f(x).

Theorem 1.4. The risk at point x is defined as Rx = E
[(
f(x)− f̂(x)

)2
]

, and the integrated risk

is R =
∫
Rx dx. Assuming that f ′′ is absolutely continuous and

∫
(f ′′′(x))2 dx <∞, then

Rx =
1

4
σ4
Kh

4
N

(
f ′′(x)

)2
+
f(x)

∫
K2(x) dx

NhN
+O

(
1

N

)
+O

(
h6
N

)
and

R =
1

4
σ4
Kh

4
N

∫ (
f ′′(x)

)2
dx+

∫
K2(x) dx

NhN
+O

(
1

N

)
+O

(
h6
N

)
(1.9)

By setting the derivative of (1.9) with respect to hN to zero to find the optimum value of hN , we
have

h∗N =

(
c1

σ4
KA(f)N

) 1
5

, (1.10)

where c1 =
∫
K2(x) dx and A(f) =

∫
(f ′′(x))2 dx. Hence, the best bandwidth decreases at rate

N−
1
5 . Plugging h∗N back into (1.9), we see that R = O(N−

4
5 ). The following theorem shows that

for the conditions on f in theorem 1.4 1

N
4
5

is the fastest rate that can be achieved.
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Theorem 1.5. Consider the set of all probability density functions denoted by F and denote the
m-th derivative of f by f (m) and define

Fm(c) =

{
f ∈ F :

∫ ∣∣∣f (m)(x)
∣∣∣2 dx ≤ c2

}
.

Then for any kernel estimator f̂N

sup
f∈Fm(c)

Ef
[∫ (

f̂N (x)− f(x)
)2
dx

]
≥ b

(
1

N

) 2m
2m+1

, (1.11)

where b > 0 only depends on m and c.

Having m = 2 in theorem 1.5, equation (1.11) shows that a faster convergence rate than N−
4
5 is

impossible for kernel estimators. Similar to histogram estimators, the choice of h∗N in (1.10) cannot
be computed practically since the true pdf f is unknown. Other than the cross-validation method
which will be discussed later, Normal reference rule can also be used which is illustrated in the
following.

Normal reference rule: Under the idealized assumption that f is Normal, h∗N in (1.10) is

h∗N =
1.06σ̂

N
1
5

,

where

σ̂ = min

{
s,

Q

1.34

}
,

and s is the sample standard deviation and Q is the interquartile range (the 75-th percentile minus
the 25-th percentile, and Q is divided by 1.34 to have a consistent estimate of the standard deviation
of the Normal distribution). In practice, the Normal reference rule is also used for smooth densities
other than the Normal distributions.

The following theorem gives the expression for the cross-validation that can be used for finding h.

Theorem 1.6. For ∀h > 0,

E
[
Ĵ(h)

]
= E [J(h)]

and

Ĵ(h) =
1

hN2

∑
i

∑
j

K∗
(
xi − xj
h

)
+

2

Nh
K(0) +O

(
1

N2

)
,

where K∗(x) = K(2)(x)− 2K(x) and K(2)(z) =
∫
K(z − y)K(y) dy.

Another approach to choose bandwidth h is plug-in bandwidth. The only unknown parameter in
the optimum bandwidth h∗N in equation (1.10) is A(f) =

∫
(f ′′(x))2 dx. In the plug-in bandwidth

approach, you first estimate f ′′ by f̂ ′′, and use the estimate to find h∗N , but in order to find the
second derivative estimate, you need to put more assumptions on the pdf function. However, even
with the more strong assumptions on f , the kernel estimator is not appropriate, where this issue
is investigate in [Loa99]. There are also methods for correcting the plug-in methods [JSH99]. A
generalization of the kernel method is to use different bandwidths h(x) for different points x or to
use different bandwidths h(xi) for different observed data points xi, which is referred to as adaptive
kernel. This way, it is easier to estimate with more flexibility and adapt to different regions with
different smoothness [Was06]. However, the job of finding many bandwidths instead of one makes
the adaptive kernel approach harder.
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1.1.4 Local Polynomial Estimator

Local polynomial approach is effective to reduce boundary bias. In the following, the local likelihood
density estimation (LLDE) method developed by Loader [Loa06] and Hjort [HJ96] is presented.
Note that the log-likelihood is L(f) =

∑N
i=1 log f(xi), but since

∫
f(u) du = 1, the log-likelihood

can also be written as

L(f) =
N∑
i=1

log f(xi)−N
(∫

f(u) du− 1

)
. (1.12)

For a target value x and a given kernel function K and bandwidth h, the local version of (1.12) is

Lx(f) =
N∑
i=1

K

(
xi − x
h

)
log f(xi)−N

∫
K

(
u− x
h

)
f(u) du. (1.13)

The tailor series expansion of the term log f(u) in (1.13) is

log f(u) ≈ Px(a, u) = a0 + a1(x− u) + · · ·+ ap
(x− u)p

p!
. (1.14)

By plugging (1.14) into (1.13), the local polynomial log-likelihood is

Lx(a) =
N∑
i=1

K

(
xi − x
h

)
Px(a, xi)−N

∫
K

(
u− x
h

)
ePx(a,u) du.

Let â = (â0, â1, · · · , âp)T = arg max
a

Lx(a), then the local likelihood density estimate is

f̂N (x) = ePx(â,x),

where it reduces to the kernel density estimation when p = 0.

1.1.5 Multivariate Problem

Consider the data points are d-dimensional, i.e. xi = (xi1, · · · , xid) for 1 ≤ i ≤ N . Due to curse of
dimensionality though the convergence rate of the estimator decreases quickly as d increases. The
product kernel extension for pdf estimator is

f̂N (x) =
1

Nh1 · · ·hd

N∑
i=1


d∏
j=1

K

(
xj − xij
hj

)
and the risk associated to this estimator is

R ≈ 1

4
σ4
K

 d∑
j=1

h4
j

∫
f2
jj(x) dx+

∑
j 6=k

h2
jh

2
k

∫
fjjfkk dx

+

(∫
K2(x) dx

)d
Nh1 · · ·hd

,

where the second derivative of f is denoted by fjj . The optimal bandwidth and the corresponding

risk satisfy hi = O
(
N−

1
4+d

)
and R = O

(
N−

4
4+d

)
, respectively. As you see, the risk increases

quickly in high dimensions.
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1.1.6 Entropy and Mutual Information Estimator

Since calculating the entropy and mutual information are based on pdf functions, the proposed
approaches for pdf estimation can directly be used for entropy and mutual information estimation.
Gao et al. [GOV16] combined the geometric nearest neighbor (NN) based approach and the kernel
based approach for estimation of entropy and mutual information. They use the k-NN distances to
choose a local bandwidth, where k is finite and independent of the sample size. It is known that for
p = 0 the LLDE reduces to KDE

f̂N (x) =
1

N

N∑
i=1

K

(
x− xi
h

)/∫
K

(
u− x
h

)
du.

By choosing the kernel function to be the step function, K(x) = I(‖x‖ ≤ 1) (Gao et al. have not
assumed the kernel function to integrate to one), and the local and data-dependent bandwidth to
be h(x) = ρk,x as the k-NN distance from x, the above estimator converts to the k-NN density
estimator as

f̂N (x) =
1
N

∑N
i=1 I (‖xi − x‖ ≤ ρk,x)

V ol (u ∈ Rd : ‖u− x‖ ≤ ρk,x)
=

k

NCdρ
d
k,x

,

where Cd = π
d
2

Γ( d2+1)
. On the other hand, the maximizer of (1.13) when using the Gaussian kernel

K(x) = e−
‖x‖2

2 for the cases of p ∈ {1, 2} has the following closed form. For p = 1, x ∈ Rd, and
h ∈ R,

f̂N (x) =
S0

N(2π)
d
2hd

e
− 1

2S20
‖S1‖2

,

where S0 ∈ R and S1 ∈ Rd are given as

S0 =
N∑
j=1

e−
‖xj−x‖

2

2h2 , S1 =
N∑
j=1

1

h
(xj − x) e−

‖xj−x‖
2

2h2 .

For p = 2 and S0 and S1 that are defined in the above,

f̂N (x) =
S0

N(2π)
d
2hd|Σ|

1
2

e
− 1

2S20
ST1 Σ−1S1

,

where S2 ∈ Rd×d and Σ ∈ Rd×d are given as

S2 =

N∑
j=1

1

h2
(xj − x) (xj − x)T e−

‖xj−x‖
2

2h2 , Σ =
S0S2 − S1S

T
1

S2
0

.

For entropy estimation, consider Ĥ(X) = − 1
N

∑N
i=1 log f̂N (xi), where LLDE with local and adaptive

choice of bandwidth is used. Specifically, the bandwidth for data point xi, h(xi), is chosen as
its distance to its k-th nearest neighor ρk,i. Then the k-local nearest neighbor (k-LNN) entropy
estimator is given as

Ĥ
(N)
kLLN (X) = − 1

N

N∑
i=1

log
S0,i

N(2π)
d
2 ρdk,i|Σ|

1
2

− 1

2S2
0,i

ST1,iΣ
−1
i S1,i

−Bk,d, (1.15)
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where Bk,d is a constant that depends on k and d, and defining Ti,m =
{
j ∈ [N ] : j 6= i and ‖xi −

xj‖ ≤ ρm,i
}

, the parameters S0,i, S1,i, S2,i, and Σi are given as

S0,i =
∑
j∈Ti,m

e
−
‖xj−xi‖

2

2ρ2
k,i , S1,i =

∑
j∈Ti,m

1

ρk,i
(xj − xi) e

−
‖xj−xi‖

2

2ρ2
k,i ,

S2,i =
∑
j∈Ti,m

1

ρ2
k,i

(xj − xi)(xj − xi)T e
−
‖xj−xi‖

2

2ρ2
k,i , Σi =

S0,iS2,i − S1,iS
T
1,i

S2
0,i

,

where m = O
(
N

1
2d
−ε
)

for an arbitrary small ε. Gao et al. proved that for k ≥ 3 and for twice

continuously differentiable pdf f(x) we have

lim
N→∞

E
[
Ĥ

(N)
kLNN (X)

]
= H(X).

Furthermore, if E
[
(log f(X))2

]
<∞, then V ar

[
Ĥ

(N)
kLNN (X)

]
= O

(
(logN)2

N

)
.

In order to find the mutual information between X and Y , one way is to use ĤKL to compute
Î3KL = ĤKL(X)+ĤKL(Y )−ĤKL(X,Y ). Kraskov et al. [KSG04] proposed ÎKSG(X;Y ), where the
joint entropy is computed in the usual way, but the marginal entropy is estimated by choosing the
bandwidth h(xi) = ρk,i(X,Y ) as the k-the nearest neighbor distance from (xi, yi), instead of using

the k-NN distance from xi. Consider Î3LNN (X;Y ) = ĤkLNN (X) + ĤkLNN (Y ) − ĤkLNN (X,Y ).
Inspired by [KSG04], Gao et al. defined ÎLNN−KSG(X;Y ), where the LNN entropy estimator in
(1.15) is used for the joint (X,Y ) and the local bandwidth h(xi) = ρk,i(X,Y ) coupled to the joint
estimator is used for the marginal entropy. For the performance evaluation of these methods refer
to [GOV16].
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